Silvio O. Conte Center for Neuroscience Research

2011-2012 Memory Lunch Seminar Series Schedule (pdf)

Babak Tahvildari, Ph.D., "Role of Inhibition in Cortical Neural Network Activity In-vitro"
Yale University
September 26, 2011

Professor Jozsef Csicsvari, "Encoding and reactivation of spatial memory traces by hippocampal cell assemblies"
Institute of Science and Technology Austria
October 31, 2011

Mark your Calendars for CRAM

December 7, 2011
Charles River Association for Memory
Fall 2011 Meeting - Superior Memory
Keynote Speakers: James McGaugh and K. Anders Ericsson

Functional Circuitry of the Hippocampus

The overall objective of the Silvio O. Conte Center for Neuroscience Research at BU is to elucidate the nature of neural processing in the hippocampus and related cortical structures that mediate episodic memory. Our hypothesis is that the hippocampus, together with associated cortical areas, represents sequential events that compose and distinguish episodes. This project provides the first systematic examination of that hypothesis and challenges three prominent alternate views, that memory for order is a reflection of a general associative function of the hippocampus, that the hippocampus is specialized for spatial memory, and that temporal organization of memory is accomplished by other brain areas. Our approach involves different levels of biological organization and combines multiple disciplinary, methodological, and technological perspectives integrated across four projects. Studies on human functional brain imaging will characterize the scope of sequence representation in which the hippocampus is involved, identify interactions between the hippocampus and cortical networks, and distinguish the role of the hippocampus from that of other brain areas involved in sequence representation. Studies on the activity of neural ensembles and rhythmic field potentials in behaving animals will identify neural coding mechanisms for temporal organization Theta theoryof non-spatial and spatial memory in hippocampal and cortical subregions. Computational studies will model behavior and spike timing, revealing basic features of circuit processing and rhythmic activity in the encoding and retrieval of sequential information. The human and animal studies emphasize the strengths of each approach and close parallels in experimental design between species. The experimental and computational projects are highly interactive and co-dependent, designed to provide a circuit level accounting of neural representation and cognitive performance. The combined research is aimed to provide a breakthrough in our understanding of the neural mechanisms of episodic memory and its deterioration associated with aging, brain damage, and disease.

Participating Institutions:
Boston University Center for Memory and Brain Department of Biomedical Engineering Department of Mathematics
Silvio O. Conte Center for Neuroscience made possible by Grant #P50 MH071702 from the National Institute of Mental Health (NIMH). This web site contents are solely the responsibility of the Center members and do not necessarily represent the official views of the NIMH or NIH.